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Abstract— Wildfires threaten human lives, destroy facilities,
and emit toxic smoke. Traditional wildfire monitoring methods
are hindered by inflexibility (e.g., watch towers) and cannot
provide precise geo-location of wildfires (e.g., satellites). Thanks
to recent development in robotics, deploying uncrewed aircraft
systems (UAS) to monitor wildfires has become a feasible
solution. This article introduces a UAS-based wildfire moni-
toring system and implement it in a prescribed burn test. A
multirotor UAS was employed as the search agent and carried
both olfactory (i.e., carbon monoxide and particulate matter)
and visual (i.e., a camera) sensors to detect the existence of
wildfires. A fuzzy inference system is designed to fuse olfactory
sensor outputs to estimate whether the UAS detects smoke.
A deep learning model, i.e., You Only Look Once version 4
(YOLOV4), is employed to identify smoke from the captured
images. We deployed the proposed UAS in a prescribed burn at
Tallahassee, Florida, in May 2022. Experimental results show
that the proposed fuzzy inference system improves the esti-
mation accuracy of whether the UAS detects smoke compared
with the fixed threshold algorithm. In addition, the proposed
YOLOv4 model can also detect smoke from captured images
with a small amount of training samples.

I. INTRODUCTION

Forests and grasslands play numerous critical economic
and ecologic roles in nature. Forests stabilize and fertilize
soil, purify water and air, store carbon, moderate climate,
and sustain plant and animal biodiversity. However, with the
increasing frequency and severity of extreme weather due to
climate change, the occurrence of wildfires has increased,
causing heavy death tolls and devastating destruction [1]. As
an example, in Northern California, a wildfire, known as the
“Camp Fire”, ended up killing 85 people, burning 153,336
acres, and destroying 18,733 structures in 2018 [2].

To prevent large-scale wildfires, the most effective action
is to detect fires in an early stage and provide information to
firefighters for faster containment and suppression [3]. Tra-
ditional wildfire detection methods include human patrols,
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(2) (b)

Fig. 1. Deploying a UAS with both vision and olfaction sensors in a
prescribed burn to monitor wildfires. (a) The UAS is ready to take off and
(b) the UAS is flying above the burning area to collect air quality and
meteorological data. These images were taken from the prescribed burn
conducted in May 2022.

smoke detectors, thermal sensors, watch towers, satellite
imagery, and manned aircraft [4]. However, these methods
have limitations in practical applications. For instance, smoke
and thermal sensors are point detectors that cannot provide
information on the exact location or the size of the fire;
human patrols are affected by complex terrain and fatigue;
watch towers are constrained with a limited field of view,
lack of flexibility, and high false alarm rate; satellite observa-
tions involve many tradeoffs and no satellite that is currently
in orbit was specifically designed for rapid fire detection.

With the recent developments in robotics and autonomous
systems, uncrewed aircraft systems (UAS) have been pro-
posed as a more convenient and flexible technology for
wildfire detection and observation [5]. Characterized by rapid
maneuverability, the ability to see over a long range, and
high personnel safety, UAS with suitable sensory modules
have great potential for wildfire monitoring and detection
tasks. In comparison to manned aircraft, UAS can access
high-risk zones to provide an over-the-hill view and perform
night time missions without putting human lives at risk [6].
Moreover, multirotor UAS can hover over a fixed position to
monitor fire behavior and provide a continuous video stream
for firefighters to plan optimal suppression strategies. The
advantages that UAS afford can help overcome many of the
limitations of traditional fire monitoring methods and offer
a significant contribution in early detection and suppression
of wildfires.

Existing UAS-based wildfire monitoring systems usually
use visual detection devices, e.g., cameras, to observe wild-
fires. Compared to visual signals, the olfactory signal (i.e.,
the sense of smell) is more instructive in sensing the ex-
istence of wildfires from a long distance. Chemical/smoke
plumes emitted from wildfire can travel several kilometers
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with the wind advection, and these plumes can be detected
with chemical/smoke sensors [7]. Further, unlike visual sig-
nals, smoke plumes will disperse in the air regardless of
obstacles and can also be detected at night time, where visual
signals are usually blocked by obstacles and are impacted by
darkness.

Motivated by this consideration, we installed both ol-
factory and visual sensors on a multirotor UAS to detect
wildfires. Olfactory sensors, including a particulate matter
(PM) and a carbon monoxide (CO) sensor, were employed
to detect PM and CO gas, which are two main materials
in the emitted smoke [8]. The visual sensor was an on-
board camera, which can capture 4K images and videos to
monitor wildfire. Fig. 1 presents the employed UAS with
the sensor suite installed. Besides, we designed two data-
processing algorithms to process olfactory and visual sensor
data to identify the existence of wildfire. Specifically, a fuzzy
inference system was devised to fuse CO and PM sensor
readings to estimate whether the UAS detects smoke, and
a deep learning model, i.e., YOLOv4, was implemented
to recognize smoke from captured images. In May 2022,
we deployed the proposed UAS in a prescribed burn in
Tallahassee, Florida. Through this experiment, we found that
the proposed UAS is feasible for detecting and monitoring
wildfires, and the selected olfactory sensors can correctly
identify smoke detection and non-detection events. These
preliminary results helped us design more advanced odor
plume tracing navigation algorithms.

II. BACKGROUND

A. The Use of UAS in Wildfire Monitoring Operations

The use of UAS for wildfire monitoring started in 1996.
A fixed-wing aircraft, named Firebird, was employed to aid
firefighters in Montana, U.S. [9]. Firebird was equipped with
a TV and an onboard infrared camera, enabled it to capture
fire images from an over-the-hill view. A few years later,
NASA Ames Research Center (NASA-ARC) and the United
States Forest Services (USFS) conducted the First Response
Experiment (FiRE) project using a fixed-wing UAS, ALTUS
II, carried a thermal scanner to construct the fire images [10].
Another large scale project called COMETS, funded by the
European Commission, started research on the coordination
of multiple UAS for wildfire monitoring [11], [12]. During
the period of 2005-2009, the USFS and NASA-ARC con-
ducted a series of prescribed burns to demonstrate the utility
of small UAS on wildfire monitoring by capturing wildfire
images [9]. Apart from the U.S., various UAS-based wildfire
monitoring experiments were conducted in Europe, including
[13]-[15].

Existing UAS-based wildfire monitoring systems center on
using vision based systems (i.e., images captured from visual
or infrared cameras) to detect wildfires. The use of other
robotic sensing abilities, such as olfaction, is rare in recently
published wildfire detection systems. Moreover, most of
these projects, e.g., [16]-[20], solve the research problems
in the phase of active fire monitoring, e.g., designing a

coordination algorithm to organize UAS to detect wildfire
perimeters.

B. Vision-based Wildfire Monitor Systems

Current vision-based wildfire monitor systems use remote
camera networks to detect wildfires [21], such as the High
Performance Wireless Research & Education Network [22],
ALERT wildfire camera [23], and ForestWatch [24]. The
vision-based wildfire detection system has a very high false
alarm rate. In California, local fire agencies have previously
deployed at least one vision-based automated smoke de-
tection system, ForestWatch from EnviroVision, but these
deployments were abandoned because the systems were
plagued by high false detection rates [25]. An evaluation
of ForestWatch in Canada [26] documents an initial false
positive rate of more than 300 per day, that was reduced
to 10-30 per day even after fine-tuning camera settings.
Another problem is that the vision-based detection accuracy
is affected significantly by weather (e.g., mist, cloud, fog,
etc.), light conditions (e.g., night time), picture angles, etc.

Compared to stationary cameras, it is more preferable to
employ UAS (equipped with cameras) to detect wildfires.
Due to the high maneuverability of UAS, wildfire images
can be captured from different angles and at a close distance.
With the rapid development of artificial intelligence and
machine learning techniques, deep learning methods are
commonly-used in identifying fires from images captured
from vision-based UAS wildfire monitoring systems [27].
For instance, Zhang et al. [28] presented a saliency detection
method to fast locate and segment core fire areas from
aerial images, where a 15-layered self-learning convolutional
neural network (CNN) was devised to process images to
detect fires. Alexandrove et al. [29] implemented three deep
learning-based object detection algorithms to detect smoke
in the aerial images.

C. Robotic Olfaction

Robotic olfaction enables robots to detect odor plumes
in environments. This technology can be used to find
odor sources in hazardous environments [30]. The most
commonly-used robotic platform in robotic olfaction is a
ground mobile robot. For instance, Li et al. [31] employed
a ground vehicle to find an ethanol source in an outdoor
environment. Pang et al. [32] implemented the artificial
potential field (APF) algorithm on a Pioneer 3 ground robot
to find an odor source. Robotic olfaction can also be applied
in underwater environments to find underwater odor sources.
Li et al. [33] proposed an autonomous underwater vehicle
(AUV) based application to find underwater hydrothermal
vents.

On flying robots, Gao et al. [34] presented a multirotor
UAS-based application to find an odor source in an indoor
environment. In Eu and Yap’s work [35], a quadrotor drone is
controlled to vary its height to search odor plumes. Luo et al.
[36] presented a flying odor compass to detect odor plumes
in a three dimensional space. Aurell et al. [37] presented a
UAS-based smoke sampling platform that carried different
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TABLE I
SPECIFICATION OF THE EMPLOYED MULTIROTOR UAS

Weight 6.27 lbs

Max Speed 49 mph
Max Flight Time 18 mins
Max Takeoff Weight | 7.71 lbs

TABLE II
SPECIFICATIONS OF ONBOARD VISUAL AND OLFACTORY SENSORS.
LXxWxH: LENGTHX WIDTH X HEIGHT.

Dimension Weicht
Name (LXWxH, g Measurements
(Ounces)
Inches)
Visual Zenmuse X3 4x3x1 3 4K Videos
Sensor 4K Camera and Images
Olfactory |  CO-B4 11x0.6 0.4 Carbon

Sensors Monoxide

PMI, PM2.5,
OPC-N3 3x2.4x%x2.5 2.7 PMI0

gas sensors to measure air quality data such as nitric oxide
(NO) and nitrogen dixoide (NO2). The US Environmental
Protection Agency (EPA) conducted a trial, where a UAS was
employed to sample air quality data over a prescribed burn
site [38]. The research niche of this work is to implement
both olfactory and visual sensors on a UAS. Both sensors are
utilized to detect existence of wildfires via CO/PM detection
and image-processing techniques to recognize smokes from
captured images.

III. METHODOLOGY
A. UAS Hardware and Onboard Sensors

In this project, we employed a flexible multirotor UAS
(Inspire 1, DJI Inc.) as the robotic agent to detect and monitor
wildfires. The specification of this UAS is presented in Table
I. We attached a 4K camera (Zenmuse X3, DIJI Inc.) as
the visual sensor to capture wildfire images. For olfactory
sensors, we installed a CO (CO-B4, Alphasense Inc.) and
particulate matter (PM) sensor (OPC-N3, Alphasense Inc.)
to detect CO and PM concentrations. Table II shows the
specifications of the visual and olfactory sensors.

As shown in Fig. 2(a), the camera is attached at the bottom
of the UAS with a 3-axis gimbal, which enables the camera
to capture images in +320 degrees in the horizontal plane
and —90 to 430 degrees in the pitch direction. Olfactory
sensors are installed on a 3-D printed shelf, which is rigidly
attached on the front of the UAS for better air intake. Fig.
2(b) presents the configuration of sensors, microprocessor,
and transmission modules. Olfactory sensors and the wireless
transmission module are connected to an onboard Arduino
Uno, which will send sensor readings back to a computer
in the ground station via a wireless transmission link. On
the other hand, the onboard camera will send live videos
back to a remote controller on the ground station. Therefore,
we can monitor live olfactory sensor readings and videos
captured from the UAS on the ground. The wireless data
transmission link between the Arduino and the ground station
is at 413 MHz, and the video transmission link is at 2.4

. 2
:
[ comuer ]

Ground Station

Fig. 2. The UAS and onboard sensors. (a) The Inspire 1 UAS and the
installed sensory modules. (b) The configuration of sensors, transmission
modules, and the onboard microprocessor.

GHz. Thus, the frequency inference does not exist. Maximal
transmission distance for the video transmission is 5.1 miles,
and for olfactory data transmission, the maximal distance is
1 mile. The updating frequency of olfactory sensors is 1 Hz.

B. Data Process of Olfactory Sensor Measurements

In this project, two olfactory sensors, including a CO and
a PM sensor, are employed to detect smokes. An important
characteristic for the employed CO sensor is that it has a
quick response time and a long recovery time [39]. In other
words, the measurements rises quickly when the CO sensor
is exposed to the CO gas and drops slowly when the sensor is
away from CO gas. By contrast, the employed PM sensor has
an opposite characteristic: its recovery time is very short but
the response time is not as rapid as the CO sensor. Therefore,
the goal was to design a data fusion algorithm that combines
the benefits from two olfactory sensors and use it to estimate
whether the UAS detects smokes.

The challenge in this task is how to effectively com-
bine two sources of information (i.e., CO and PM read-
ings) to accurately estimate smoke detection. Due to the
unknown features of the sensor response models and the
testing environment, we designed a fuzzy inference system
to fuse two sensor readings and calculate a probability of
the UAS detecting smoke. In fuzzy theory, vague variables
and environments can be handled via linguistic descriptions
and rules. Therefore, by analyzing sensor measurements, we
can estimate the current detection and non-detection event.
A fuzzy inference system contains three parts, including
fuzzification, fuzzy rules, and defuzzification [40].

1) Fuzzification: Fuzzification is the step that changes real
values of inputs and outputs into fuzzy values, which are the
degree of uncertainty that real values belong in a fuzzy set.

The simplest way to define fuzzy inputs is using the
original CO and PM sensor measurements directly. However,
both CO and PM sensors have recovery time, meaning that
the original sensor measurements cannot accurately reflect
whether the UAS detects smoke or not. By analyzing sensor
measurements of the employed olfactory sensors, we found
that the gradient of sensor measurements is more reliable
and instructive in distinguishing smoke detection and non-
detection events. For instance, if the gradient is negative, it
is very likely that the UAS leaves and does not detect the
smoke even though the current sensor measurement is high
(the sensor could be in the recovery time). On the other hand,
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Fig. 3.  Membership functions and fuzzy sets for inputs and output. (a)
CO gradient (b) PM gradient (¢) Pgetection-

if the gradient is positive, it is very likely that the UAS enters
and detects the smoke. Therefore, we define inputs of the
proposed fuzzy inference system as the gradient of CO and
PM sensor measurements. The output of the fuzzy inference
system is a probability (denoted as Pjetection), representing
the likelihood of the UAS detecting smokes.

The gradient of sensor measurements can be calculated
by the following equations. Denote x(t) as the sensor mea-
surement at ¢, the gradient G(¢) at ¢ can be calculated as

[41]:
0 t=0
Gl = {x(t) —xz(t—1) t>0’ M

Additionally, all sensor data is normalized (between O to
1) before the calculation to eliminate the effect of different
sensor output units.

Fig. 3 shows fuzzy membership functions for inputs and
the output. Since we found that the CO gradient was more
varying than the PM gradient in the collected data, we
defined five fuzzy membership functions for CO gradient
and three for the PM gradient. For the output, we defined
five fuzzy membership functions. All membership functions
are triangular functions. Specifically, the first input, i.e., CO
gradient, has five membership functions, including VN (very
negative), N (negative), NE (neutral), P (positive), and VP
(very position). The second input, i.e., PM gradient, has
three membership functions, including N, NE, and P. For
the output, i.e., the probability of detecting smokes, there
are five membership functions, including NL (not likely),
SP (slightly possible), NE (neutral), PO (possible), and VL
(very likely).

2) Fuzzy Rules: Fuzzy rules are determined based on
the sensor characteristics. As mentioned, the employed CO
sensor has a long recovery time and a short response time,
while the PM sensor has a short recovery time and a long
response time. Thus, the rise in CO measurements is more
reliable in indicating smoke detection, and the drop in PM
measurements is more effective to reflecting the smoke non-
detection. In terms of gradients, if the gradient of CO
measurements is positive, i.e., the CO reading increases, it is
very likely that the UAS detects smoke. On the other hand, if
the PM gradient is negative, i.e., the PM reading decreases,
there is a high chance that the UAS does not detect smoke.
According to the above analysis, two sample fuzzy rules can
be defined in a ‘IF-THEN’ format:

IF CO gradient is VP AND PM gradient is N, THEN
Pyetection 18 VL.

TABLE IIT
L1ST OF FuzZYy RULES. VN: VERY NEGATIVE; N: NEGATIVE; NE:
NEUTRAL; P: POSITIVE; VP: VERY POSITIVE; NL: NOT LIKELY; SP:
SLIGHTLY POSSIBLE; PO: POSSIBLE; VL: VERY LIKELY.

Inputs Output
Rule No- —5Gradient b PM Gradient Pdetelc)tion
I VN N NL
2 VN NE NL
3 VN P SP
7 N N NL
5 N NE NL
6 N P NE
7 NE N NL
8 NE NE NE
9 NE P PO
10 P N SP
1 P NE PO
2 P P VL
3 VP N NE
4 VP NE VL
5 VP P VL

IF CO gradient is N AND PM gradient is N, THEN
Pdetection is NL.

Table III enumerates all possible combinations of inputs
and outputs and presents fifteen fuzzy rules (in a ‘IF-THEN’
format) in the proposed fuzzy controller.

3) Defuzzification: Defuzzification is a procedure that
maps the fuzzy output to a crisp signal. In this work,
the centroid method [42] is selected as the defuzzification
algorithm, which can be expressed as follow:

Potoction = 21 Qi p(Qi)
etection Z?zl lj, (Ql) )

where Pjetection 1S the probability of detecting smokes;
is the index of fuzzy rules, ie., i € [1,15]; @; denotes
the center of the active membership function of the output
variable provided by the ith rule; p(Q;) is the output of the
conjunction degree of the IF part of the ith rule.

2

C. Image Processing of Visual Sensor Data

In this work, the image processing algorithm is to detect
and extract smoke areas from the captured images in real-
time. This visual detection provides direct insight regarding
the existence of wildfires. Recent years, using deep learning
techniques in image processing is ubiquitous, and there are
many pre-trained deep learning models for image processing
tasks. Employing a pre-trained model is more efficient than
devising and training a new deep learning model from scratch
since the pre-trained model needs fewer training images to
reach a high detection accuracy [43]. Here, we employed a
pre-trained deep learning model, i.e., You Only Look Once
Version 4 (YOLOv4) [44], to detect smoke from images
and videos. In this section, we introduce the YOLOv4
architecture, training datasets, and the testing results after
the training.

1) The YOLOv4 Model: The YOLOv4 [44] is an object
detection model that is used to detect different objects from
images or videos. When objects are found in images, these
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Fig. 4. The YOLOvV4 architecture. From left to right, three components
are the backbone, neck, and head, respectively. In this work, the backbone
is selected as a pre-trained CNN, named CSPDarknet53; the neck connects
the backbone and heads; three heads are YOLOvV3 networks that predict the
bounding boxes, classification scores, and objectiveness scores, respectively.
This image was retrieved from [45].

object classes are enclosed in a bounding box and their class
is identified. YOLOv4 is a one-stage object detector that
uses a single network to detect object region and classify
the object.

Fig. 4 presents the implemented YOLOv4 model’s ar-
chitecture, which contains three components, namely back-
bone, neck, and head. The backbone is typically a pre-
trained convolutional neural network (CNN) on a large
image dataset, e.g., ImageNet. It is responsible for extracting
features from images for later classification. In this work, the
backbone is selected as the CSPDarknet53 network, which
is a combination of Darknet53 and the Cross Stage Partial
(CSP) networks [46]. The Darknet53 is a 53 layers deep
CNN, and the CSP network is a special network architecture
that splits the feature map into two parts and sends one copy
through the dense block and sends the other straight on to
the next stage. The neck connects the backbone and the head,
which concentrates features extracted from the backbone
and sends them to the head for classification. In the head,
categorization and localization information are estimated. For
the implemented YOLOv4 model, it has has three detection
heads, and each head is a YOLOvV3 network that predicts
the bounding boxes, classification scores, and objectiveness
scores, respectively.

2) Training Data: Training data is imperative to the DL
model’s performance. A diverse dataset allows the DL model
to train general rules in object detection, improving the
detection accuracy. In this project, we used Wildfire Smoke
Image dataset [47] to train the selected DL model. As shown
in Fig. 5, the dataset contains various smoke images from
different views, which were collected from remote wildfire
monitoring cameras [22]. This dataset contains 737 smoke
images, of which 516 were used for training and 221 for
testing.

3) Training Process: We downloaded the training dataset
to train the YOLOv4 model for up to 6,000 iterations in
order to achieve accurate classification and localization. Each
thousand steps in our suggested technique produced a trained
weight file. Using this weight file, we computed the values of
four information measures based on the testing dataset while

(b)

Fig. 5. Sample smoke images retrieved from the Wildfire Smoke Image
dataset [48].

Fig. 6. Prediction result of the YOLOv4 after the training. We can see
that the YOLOv4 model can correctly detect and label smoke in images.

keeping the 0.25 and 0.50 confidence threshold values. The
six weight files we obtained in this way were stored, and
the most effective ones were eventually applied to smoke
detection. The values of the information measures calculated
to evaluate the best-trained weight files are shown. The
average map value of our model is 94 percent, which is
excellent for smoke detection. A sample testing image is
presented in Fig. 6, where the smoke areas are correctly
detected. Our model processed each image in the testing data
set on average in 77 milliseconds on the computer with an
Intel i9-12900 CPU and a Nvidia RTX 3090 GPU. When
processing live or recorded video, we reached a frame rate
of 14 frames per second.

IV. EXPERIMENT
A. Prescribed Burn Field and the Flight Trajectory

In May 2022, we collaborated with the Tall Timber fire in-
stitution to conduct a prescribed burn at Tallahassee, Florida.
Fig. 7(a) shows the satellite image of the prescribed burning
area. The size of the burn area is approximately 9 acres,
which is a forest land inside the Tall Timber fire institution.
In the spring season, the Tall Timber fire institution conducts
a prescribed burn to eliminate weeds and fertilize the land.

During the prescribed burn, we deployed a multirotor UAS
and successfully collected data during the burn. In the flight,
the UAS started at the downwind area of the burning region
and flew upwind toward the burning region. The UAS was
remotely controlled by a human operator, and the sensor data
was transmitted to the ground station for live monitoring of
the wildfires. Fig. 7(b) presents the trajectories of the flight,
which was recorded from the onboard GPS. We can see that
the UAS crossed the burning areas multiple times to collect
the environmental data. The flight was conducted at the early
phase of the prescribed burn, i.e., right after the ignition, and
returned to the ground after around 15 minutes.

720

Authorized licensed use limited to: Louisiana Tech University. Downloaded on June 18,2024 at 20:44:31 UTC from IEEE Xplore. Restrictions apply.



30,6545

30654

30,6525

30652

306515
84219° 84218 84217 84216
Longitude

(@) (b)

Fig. 7. Deploying an UAS in a prescribed burn to collect environment
data. (a) The prescribed burn area (highlighted with the blue color). (b) The
flight trajectory of the UAS, where the UAS is controlled by the human
operator. The labeled position in the diagram is the start position.
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Fig. 8. Recorded olfactory sensor measurements and outputs from the
proposed fuzzy inference system. (a) The olfactory sensing data during the
flight, including CO (the upper plot) and PM (the lower plot) data. (b) The
data processing result of the proposed fuzzy inference system.

B. Recorded Sensor Data and Data Processing Results

Fig. 8 shows the plots of olfactory sensor readings in the
flight and outputs from the proposed fuzzy inference system,
which fuses CO and PM sensor reads to estimate whether the
UAS detects smoke. Specifically, the upper diagram in Fig.
8(a) is the plot for recorded CO concentrations, and the lower
diagram in Fig. 8(a) is the recorded PM concentrations. From
these two plots, we can see that concentrations of CO and
PM have similar changing trends throughout the flight. For
instance, at 17:21:24, the UAS entered the smoke according
to the video recording, and CO and PM concentrations were
high simultaneously; at 17:22:15, the UAS left the smoke,
and CO and PM concentrations were decreasing at the same
time. In addition, we can clearly observe that the employed
CO sensor has a quick response time and a slow recovery
time, whereas the onboard PM sensor has a much quicker
recovery time compared to the CO sensor.

Fig. 8(b) presents the output of the proposed fuzzy infer-
ence system, which is the probability of the UAS detecting
smoke. We consider the UAS detects the smoke when the
fuzzy output is larger than 0.1. Besides, by observing the
recorded UAS videos, we can estimate and manually label
the smoke detection and non-detection period. Therefore, we
can compare the proposed fuzzy inference system, the gra-
dient threshold algorithm, and the traditional fixed threshold
algorithm in distinguishing the smoke detection and non-
detection events. Fig. 9 presents the comparison result, where
dotted lines represent the smoke detection periods.

There are six groups of data in Fig. 9, named as ‘CO-

CO-Fixed| © = -

PM-Fixed -~ @® . - [ )
CO-Gradient @»® o @a» co®® o ammme o e
PM-Gradient -

Fuzzy GEEDe GEESS oSN © GEEEEED o amn

Manual Label

17:21:24  17:23:11  17:24:56  17:26:44 17:28:45 17:30:34  17:32:26
Time

Fig. 9. The comparison of CO, PM, fuzzy inference system’s output, and
manual label from the recorded videos. The dotted line

Fixed’, ‘PM-Fixed’, *’CO-Gradient’, ‘PM-Gradient’, ‘Fuzzy’,
and ‘Manual Label’. Explanations of these labels are listed
as follows. 1) ‘CO-Fixed’ and ‘PM-Fixed’ are results of the
fixed threshold algorithm, which relies on a fixed threshold
to distinguish smoke detection and non-detection events. For
both CO and PM measurements, the threshold is defined as
the average of first NV recorded data when the UAS is not
in smoke. N = 100 in this comparison. 2) ‘CO-Gradient’
and ‘PM-Gradient’ are results of the gradient threshold
algorithm. If the gradient of CO or PM measurements is
positive, we consider the UAS detects smoke; otherwise, the
UAS does not detect smoke. Eqn. 1 is used to calculate
the gradient for CO and PM. 3) ‘Fuzzy’ is the result from
the proposed fuzzy inference method. We consider that the
UAS detects the smoke when the fuzzy output is larger than
0.1; otherwise, the UAS does not detect smoke. 4) ‘Manual
Label’ is the result from the manual labelling of recorded
videos from the UAS’s camera. From these videos, we can
observe a complete process of the UAS entering and leaving
smoke. In this comparison, we consider ‘Manual Label’ as
the truth. The dotted lines shows the duration of smoke
detection events.

From Fig. 9, we can observe that the proposed fuzzy
inference system (‘Fuzzy’ in Fig. 9) has more overlaps with
the ‘Manual Label’ data compared to the four other groups
of data. Specifically, we can see that the fixed threshold
algorithm cannot accurately recognize smoke detection and
non-detection events since the overlapping periods between
‘CO-Fixed’/'PM-Fixed’ and ‘Manual Label’ are short. Be-
sides, the gradient threshold algorithm is significantly better
than the fixed threshold algorithm, where both ‘CO-Gradient’
and ‘PM-Gradient’ have more overlaps with ‘Manual La-
bel’ compared to ‘CO-Fixed’ and ‘PM-Fixed’. Comparing
‘CO-Gradient’/*PM-Gradient’ and ‘Fuzzy’, we can see that
‘Fuzzy’ is more reliable since it has more overlaps with
‘Manual Label’ than the other two plots, especially in
17:21:24 - 17:23:11 and 17:26:44 - 17:28:45. This result
indicates that the proposed fuzzy inference system is more
accurate in distinguishing smoke detection and non-detection
events.

Finally, Fig. 10 demonstrates the smoke prediction results
generated by the trained YOLOv4 model, where images were
captured from the onboard camera during the prescribed
burn. The time of images being captured are labeled beneath
each diagram. From this group of images, we can see that the

721

Authorized licensed use limited to: Louisiana Tech University. Downloaded on June 18,2024 at 20:44:31 UTC from IEEE Xplore. Restrictions apply.



(a) 17:22:36 (b) 17:22:37

(d) 17:26:39

(e) 17:26:42

) 17:27:37

Fig. 10. Smoke prediction generated by the trained YOLOv4 model. Images
were captured from the UAS during the flight at different times. Red squares
in the images highlighted the detected smoke areas. High resolution images
can be found via this link [49].

YOLOvV4 model can correctly label the smoke area from the
captured images. We can also see the correlation between
the olfactory and vision sensors. For instance, at 17:22:37
(i.e., Fig. 10(b)), the proposed YOLOv4 model detected the
smoke from the image, the olfactory sensors simultaneously
reported the smoke detection as we can see in Fig 9.

It is worth noting that the proposed YOLOv4 model is not
very effective in detecting smoke near the UAS. For instance,
as shown in Fig. 10(e) and (f), the proposed YOLOv4 model
did not detect the smoke on the top side of the image, where
the smoke is close to the UAS. This is because the training
dataset only contains smoke images that were captured from
remote watch towers, where the smoke position is far away
from the camera. Due to this reason, we cannot conduct
a comparison between YOLOvV4 results and the ‘Manual
Label” data in Fig. 9 since ‘Manual Label’ indicates periods
when the UAS is inside/outside the smoke.

C. Discussion and Future Works

1) The Limitations: As mentioned, the YOLOv4 model
cannot detect smoke near the UAS effectively. The most
straightforward method to overcome this problem is adding
more training images containing smoke near the camera po-
sitions. Another limitation is the duration of UAS’s operating
time. In our experiment, the UAS could operate 20 mins per
charge, and the communication distance is up to 1 mile. For
full-scale wildfire localization task (e.g., finding a wildfire
location from several kilometers away), a larger fixed-wing
UAS with higher battery capacity should be employed as the
search agent.

2) The Future Works: In the future, we can collect more
training data to improve the performance of the YOLOv4
model. On the other hand, we could also combine image
detection with olfactory sensing to produce the comprehen-
sive detection that contains both near and far smoke. Since
olfactory sensors rely on particle contact to detect smoke,
they are ideal for detecting smoke near the UAS. Thus,
the olfactory sensing data can serve as the complement of
the vision detection to provide the comprehensive smoke
information. This fused information could also be used to
estimate smoke propagation areas and smoke source (i.e.,
wildfire) locations.

Fusing vision and olfaction signals to make reliable de-
tection of wildfires (or smoke) is a promising research
direction to pursue. Research [50] shows that olfaction
and vision modalities are associated with human behaviors,
where humans rely on the fusion of olfactory and visual
signals to perceive the external world. Most UAS-based
wildfire systems rely on vision-based instruments to detect
wildfires. The integration of olfaction and vision is rare. In
this work, the proposed CO and PM sensors and the fuzzy
inference method show the capability of olfactory sensors in
detecting smoke, which can be used as preliminary results for
future researchers to integrate multiple perceptive abilities
to produce a more reliable detection. In the future, we
will consider fusing robotic olfaction and vision to produce
comprehensive smoke information and use it to estimate
smoke propagation areas and smoke source locations.

V. CONCLUSION

In this paper, we present a wildfire monitoring system
using UAS. Besides using a camera to monitor wildfires,
two olfactory sensors, including a CO and PM sensor, are
added on the UAS to detect olfactory measurements. The
proposed UAS system was implemented in a prescribed burn
in Tallahassee, Florida. Experiment results show that both
vision and olfactory sensors were instructive in detecting
wildfires. Besides, the proposed fuzzy inference method is
more reliable than the fixed threshold and gradient thresh-
old algorithms in distinguishing smoke detection and non-
detection events, and the proposed YOLOv4 model can
detect smoke areas on the ground. Results presented in this
work will help us and future researchers design autonomous
odor plume tracing algorithms that combines both vision and
olfaction.
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